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Different theoretical models of the BOLD contrast mechanism are used for many applications including
BOLD quantification (qBOLD) and vessel size imaging, both in health and disease. Each model simplifies
the system under consideration, making approximations about the structure of the blood vessel network
and diffusion of water molecules through inhomogeneities in the magnetic field created by deoxyhemo-
globin-containing blood vessels. In this study, Monte-Carlo methods are used to simulate the BOLD MR
signal generated by diffusing water molecules in the presence of long, cylindrical blood vessels. Using
these simulations we introduce a new, phenomenological model that is far more accurate over a range
of blood oxygenation levels and blood vessel radii than existing models. This model could be used to
extract physiological parameters of the blood vessel network from experimental data in BOLD-based
experiments. We use our model to establish ranges of validity for the existing analytical models of
Yablonskiy and Haacke, Kiselev and Posse, Sukstanskii and Yablonskiy (extended to the case of arbitrary
time in the spin echo sequence) and Bauer et al. (extended to the case of randomly oriented cylinders).
Although these models are shown to be accurate in the limits of diffusion under which they were derived,
none of them is accurate for the whole physiological range of blood vessels radii and blood oxygenation
levels. We also show the extent of systematic errors that are introduced due to the approximations of
these models when used for BOLD signal quantification.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Analytical modelling of NMR signal formation in the presence of
a blood vessel network has been attempted many times since the
discovery of BOLD contrast [1,2]. For the static dephasing regime
(zero diffusion) a model was introduced by Yablonskiy and Haacke
that explained some of the major features of the phenomenon [3]. In
particular, the dependence on the susceptibility of the blood vessel
network and its fractional occupancy, the discovery of which allows
the oxygenation and volume fraction of deoxygenated blood to be
measured separately in the brain [4,5]. This is an important finding
as quantitative measures of blood oxygenation represent a rational
means of evaluating tissue ischemia [6,7] and hypoxia [8,9].

A number of models that attempt to improve on the results of
the Yablonskiy and Haacke model by introducing diffusion to the
model have since been proposed. One advantage to this approach
is that it elucidated the dependence on blood vessel radius which
has led to the emergence of vessel size imaging [10,11]. The ability
ll rights reserved.

ratory, JJ Thomson Avenue,
to measure vessel radii in vivo has obvious implications in the
study of angiogenesis and vascular normalisation in tumour stud-
ies [12,13]. However, all ‘‘diffusive models’’ of the BOLD mecha-
nism have made assumptions in their derivation that limit the
range of vessel radii for which they are valid. In most cases, the ex-
act criteria for validity are unclear.

Using Monte Carlo methods it is possible to directly simulate
the BOLD signal for any tissue and pulse sequence parameters with
equal accuracy. Studies taking this approach [14–16] have in-
creased understanding of the link between BOLD signal and the
underlying hemodynamics, which in turn has influenced fMRI
experimentation design. However, such numerical models have
not allowed the contributions of the various signal decay mecha-
nisms to be separated. Application of these models therefore typi-
cally involves interpolation [15] or extrapolation [17] of high
dimensional lookup tables which means that they are not as trans-
ferable as analytical models.

In this study we use Monte-Carlo simulation methods to show
the validity criteria of a number of models from the literature.
We then use simulation results to construct a simple phenomeno-
logical model that is extremely accurate for the physiological range
of blood oxygenation, blood volume and vessel radii.

http://dx.doi.org/10.1016/j.jmr.2011.06.003
mailto:jdd36@cam.ac.uk
http://dx.doi.org/10.1016/j.jmr.2011.06.003
http://www.sciencedirect.com/science/journal/10907807
http://www.elsevier.com/locate/jmr
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2. Theory

The basic physics behind the BOLD mechanism is well under-
stood. Blood vessels containing paramagnetic deoxyhaemoglobin
induce extravascular local field inhomogeneities, which cause
spins of protons in the system to sustain differing phase shifts /,
and hence create MR signal decay. The signal remaining at time t
after excitation is given by the average of the contributions from
protons across the volume

sðtÞ ¼ hexpði/ðtÞÞi; ð1Þ

where because magnetic fields obey linear superposition, a proton’s
phase can be found by integrating the sum of frequency shifts xn(t)
caused by all N vessels over time

/ðtÞ ¼
Z t

0
dt0
XN

n¼1

xnðt0Þ: ð2Þ

In this equation time dependence of frequency shifts xn(t) is
due to the water molecule’s diffusion in the inhomogeneous field.
If blood vessels are assumed to be infinite cylinders of uniform sus-
ceptibility, then the frequency contribution to an extravascular
proton at distance r from the centre of a cylinder is given by:

xðr; h;uÞ ¼
dx cos2 h� 1

3

� �
r < R

dx R2

r2 cos 2u sin2 h r > R

(
; ð3Þ

where R is the vessel radius, h is the angle between the vessel and
the B0 field and u is the azimuthal angle of the proton position in
a plane perpendicular to the vessel (not to be confused with the
phase /). dx is the characteristic frequency shift (i.e. x(R, p/2, 0))
and can be found from

dx ¼ 2pcB0Dv0Hctð1� YÞ; ð4Þ

where Dv0 is the difference in susceptibility between entirely oxy-
genated and entirely deoxygenated red blood cells, Hct is the blood
hematocrit, Y is the blood oxygenation level (Y = 1 for fully oxygen-
ated blood and Y = 0 for fully deoxygenated blood). In case when
arterial blood is fully oxygenated the value (1 � Y) coincides with
the oxygen extraction fraction OEF. In this study we assume cere-
bral Hct = 0.34 [17], Dv0 = 0.264 � 10�6 [18].

2.1. The Yablonskiy and Haacke model (static dephasing regime) (3)

This model was derived in the static dephasing regime which
means that diffusion is considered to be zero. If the vessel network
is assumed to be composed of randomly oriented vessels, the BOLD
signal can be found from Eqs. (2)–(4) by taking the limit as the
number of vessels N and system volume V0 approach infinity (their
ratio V0/N remains constant) and averaging over all possible proton
positions, vessel positions and vessel orientation angles

s0ðtÞ ¼ lim
N!1

Z
V0

d3r
V0

exp �
XN

n¼1

ixnðrÞt
" #* +

; ð5Þ

where s0 denotes the signal in the static dephasing regime. In the
case of blood vessels with a uniform orientation distribution, this
expression can be reduced to the following, rather simple equation
[3]:

s0ðtÞ ¼ exp � f
3

Z 1

0
duð2þ uÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� u
p 1� J0ðdxtuÞ

u2

� �
; ð6Þ

where J0 is the zero order Bessel function, f is the volume fraction
occupied by deoxyhaemoglobin-containing cylinders (the deoxy-
genated Cerebral Blood Volume, dCBV). Equation (6) can also be
presented as
s0ðtÞ ¼ exp �f 1F2 �1
2

� �
;

3
4
;
5
4

� �
;� dx2t2

4

� �
� 1

� �	 

; ð7Þ

where pFq is the extended hypergeometric function. For the spin-
echo sequence with spin echo time TE, t should be replaced by
|t � TE|. Note that in this approximation the signal decay depends
only on total dCBV and not the vessel radii. Also note that equations
in this paper may appear to differ from those in the cited articles
due to the varying definitions of dx.

2.2. The Kiselev and Posse model (linear local field approximation) (19)

To include diffusion in their model, Kiselev and Posse make use
of the solution to the Bloch–Torrey equation for the case of linear
local field variations. The result is that the signal in Eq. (1) can
be approximated to

sðtÞ ¼ exp �ixðrÞt � D
3
½rxðrÞ�2t3

� �� �
: ð8Þ

Following this through as before, the final expression for the
signal is

sðtÞ¼exp �f
Z p

0

sinhdh
2

Z 1

0

du
u2 1�exp � 4D

3R2 dx2t3u3 sin4 h

� �
J0ðdxtusin2 hÞ

	 
� �
;

ð9Þ

where D is the diffusion coefficient of water in tissue. The expres-
sion for the signal in the presence of a spin echo is given in Ref.
[19] (in which Eq. (9) is misprinted with a positive exponent).

Kiselev and Posse have also introduced a model for the case of
fast diffusion (the Diffusion Narrowing Regime or DNR) [20] by
solving the Bloch–Torrey equations with second order perturba-
tion theory. This model is valid for the case of fast diffusion in
the same way as the Sukstanskii and Yablonskiy model [21,22],
hence has very similar asymptotic forms and will not be explored
here.

2.3. The Sukstanskii and Yablonskiy model (Gaussian phase
approximation) [21,22]

To create a model of BOLD signal for the case of fast diffusion,
Sukstanskii and Yablonskiy made the assumption that the phases
of spins in the system follow a Gaussian distribution [21,22]. This
allows Eq. (1) to be approximated to

sðtÞ ¼ exp � 1
2 h/

2ðtÞi
� �

;

¼ exp �
R t

0 dt0ðt � t0ÞGðt0Þ
 �

;
ð10Þ

where G(t) is the frequency correlation function given by

GðtÞ ¼ hxð0ÞxðtÞi ¼ hxðrÞxðrÞPðr; r0; tÞi: ð11Þ

In the above, P(r, r0, t) is the probability of diffusing from r to r0

in time t (this would be a simple Gaussian if diffusion were not re-
stricted) and the angular brackets refer to an average over proton
positions, vessel positions and vessel orientations. For the case of
impermeable cylinders we arrive at the following expression for
the signal

sðtÞ ¼ exp �128fdx2t2
D

15p2

Z 1

0
dv gðv2t=tDÞ

v9½J022 ðvÞ þ N022 ðvÞ�

 !
; ð12Þ

where J0(v), and N0(v) are first derivatives of Bessel functions of the
first and second kinds respectively and, for the case of the FID se-
quence, the function g is given by

gFIDðxÞ ¼ expð�xÞ þ x� 1: ð13Þ



Fig. 1. Probability of blood volume as a function of the radius of its containing
vessel.
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To allow full comparison with the previous models, this is ex-
tended to arbitrary time in the spin echo sequence in the results
section.

Sukstanskii and Yablonskiy also derived an expression for the
intravascular signal, where x is given by Eq. (3) (r < R). In the intra-
vascular space, x is independent of R, r and u, therefore the only
averaging necessary is over vessel orientation angle:

siv ðtÞ¼
Z p

0

sinhdh
2

exp �idx t cos2 h�1
3

� �	 


¼ p
2dxjtj

� �1=2

exp
idxt

3

� �
C

2dxt
p

����
����

1=2
 !

� i signðtÞS 2dxt
p

����
����

1=2
 !" #

;ð14Þ

where S(x) and C(x) are the Fresnel functions (defined here accord-
ing to Abramovitz and Stegun [23]), respectively, sign(x) is a sign
function and the factor sinh/2 accounts for the probability distribu-
tion of vessel orientation angles. We include this model for com-
pleteness, however it is not explored as this work concerns only
the extravascular signal.

2.4. The Bauer et al. Model (strong-collision approximation) (24, 25)

Bauer and colleagues originally introduced this model for the
myocardium where blood vessels may be considered to be parallel.
In the results section we extend it to the case of random cylinders
to make it relevant to the case of BOLD signal in the brain. Here we
first show it as it was originally derived [24].

In order to find the signal in the presence of diffusion, the
authors first find the Laplace transform of the signal in the static
regime (the signal from the Yablonskiy and Haacke model)

s
_

0ðsÞ ¼
Z

V
d3r

1
s� ixðrÞ ;

¼ 1
ð1� fÞs HC

s
fdx

� �
� fHC

s
dx

 �	 

; ð15Þ

where the function H is specific to the geometry of the field perturb-
er. For the case of parallel cylinders, the H function is given by

HcðyÞ ¼ 1þ sin4 h
y2

 !1=2

: ð16Þ

Under the strong-collision approximation, the frequency distri-
bution in the presence of diffusion can then be found using the
expression

pðxÞ ¼ 1
p

Re
s
_

0ðixþ s�1
c Þ

1� s�1
c s

_

0ðixþ s�1
c Þ

�����
�����; ð17Þ

where for the case of impermeable cylinders, sc is given by

sc ¼
R2

4D
� ln jfj
ð1� fÞ : ð18Þ

Finally, the signal in the diffusive regime is found by Fourier
transform of the distribution of frequency states.

sðtÞ ¼
Z 1

�1
dxpðxÞ expðixtÞ: ð19Þ

Eqs. (15)–(19) are derived in [24,25] for the FID signal. For the
signal at the spin echo time (t = TE), the expression was derived
in Ref. [25].

2.5. Monte Carlo simulations

In order for simulation and theoretical results to be directly
comparable, simulations were performed under the same approx-
imations as previously described [26]. The vessel network was sim-
ulated by randomly selecting starting points in a sphere and
extending them out to the surface in random orientations. Half of
the starting points were on the surface of the sphere and half with-
in the volume as this method produced the highest homogeneity of
vessel density [26].

For simulations with realistic vessel radii we assumed the dis-
tribution given in Ref. [27]:

P
1ffiffiffiffiffiffi
2R
p
� �

¼ Nð0:38;4:9� 10�3Þ 0 < R < 25 lm
0 otherwise

(
ð20Þ

where N(l, r2) is a normal distribution with mean l and variance
r2. This distribution can be split into capillaries and veins by mak-
ing the assumption that capillaries are symmetrically distributed
about a mean of 3.235 lm [27]. From these distributions, the blood
volume corresponding to a given radius of the containing vessels is:
f(R) = R2P(R)/C where C is the normalisation constant: C ¼

R Rmax

0 R2

PðRÞdR=ftotal (see Fig. 1).
Vessels were added and assigned radii by sampling from the

relevant distribution until the target f was reached. Then protons
were added to the system in random locations near the centre of
the sphere as this region had the highest homogeneity of vessel
density. A 3D rendering of section of simulation space with a phys-
iological distribution of vessel radii is given in Fig. 2. Note that the
region shown represents only a tiny fraction of the total simulated
volume.

At each time-point the protons were moved in each dimension
by a step that was randomly sampled from the distribution N(0,
2Ddt) where dt is the time interval. If the step brought a proton into
contact with a vessel it was mirror-reflected from the surface, since
the vessels are assumed to be impermeable. The effect of vessel
permeability was tested and found to have only a minor impact
on signal formation, in agreement with Ref. [14]

The signal was calculated from the discretised versions of Eqs.
(1) and (2)

sðtÞ ¼ 1
P

XP

p¼1

expði/pÞ; /p ¼
Xt=dt

m¼1

XN

n¼1

xmpndtpn; ð21Þ

where xvpm is the precession frequency contribution of vessel n (of
a total N) on proton p (of a total P) at time-point m (of a total t/dt at
time t) (defined in Eqs. (3) and (4)). To simulate a spin echo, the sign
of x was reversed for t > TE/2.

The number of protons per simulation was 10,000. At the begin-
ning of every simulation, protons were placed in random locations
within 3 mm of the centre of the network which itself had a radius
of 50–400 mm, increasing with the vessel radius. The default value
of the time-step dt was 250 ls but this was subdivided into inter-
vals of 25 ls for any proton-vessel pair with R2/r2 > 0.04. Vessels
that did not pass within 3 mm of a proton were assumed to have



Fig. 2. Field in the simulated vessel network. Green–Blue corresponds to negative
contributions and yellow–red corresponds to positive contributions. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 3. Comparison of the Kiselev and Posse model with simulation results. Markers
are simulated data, solid lines are theoretical curves. To better display results,
signals corresponding to different R (displayed in micrometer values on the chart)
are normalised to different initial amplitudes S(0). The input parameters for all
simulations were OEF = 0.4, dCBV = 0.03. The model captures the shift of the signal
peak around spin echo relatively well, but not the signal behaviour around the spin
echo, even for rather large vessel radii. There is only perfect agreement when
R ?1. In this case diffusion does not play any role (static dephasing regime), at
which point the model is identical to that of Yablonskiy and Haacke.

Fig. 4. Comparison of the Sukstanskii and Yablonskiy model and simulation results.
Markers are simulated data, solid lines are theoretical curves. To better display
results, signals corresponding to different R (displayed in micrometer values on the
chart) are normalised to different initial amplitudes S(0). The input parameters for
all simulations were OEF = 0.4, dCBV = 0.03. Good agreement is seen for low vessel
radius and short time, as expected under the Gaussian approximation.
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no net effect on precession frequency, and only the effects of those
within 1 mm were recalculated at every time-step. The list of ves-
sels for which this was the case was refreshed for all protons after
any proton had moved a distance greater than 0.03 mm. These
time-saving measures were tested and found to have negligible ef-
fect on the resultant signal. Simulations were repeated 8–24 times,
increasing with vessel radius to prevent increase in errors due to
reduced averaging of vessel contributions with fewer vessels.

All simulation code was written in C++ and parallelised with
MPI (Message Passing Interface). Some routines were based on
code from Numerical Recipes in C++ (Cambridge University Press,
2002).

3. Results

First, we compare the results of the computer simulations with
predictions of different theoretical models described above. The
physiological parameter values used throughout this section are
typical for the normal brain: OEF = 0.4, dCBV = 0.03; The spin echo
time is TE = 60 ms as is typical in experimental settings [4,26].

No changes were made to the original Kiselev and Posse model
as it could be directly compared to our simulation results in its
original form (only the misprint in the sign in Eq. (9) was
corrected). Results are presented in Fig 3.

In order to calculate the signal after the refocusing 180� RF
pulse (t > TE/2) using the Sukstanskii and Yablonskiy model we
have generalised the function g in Eq. (12) to:

gðt; xÞ ¼ 2 exp � x2TE
2sD

� �
þ 2 exp � x2ð2t þ TEÞ

2sD

� �

� exp � x2ðt þ TEÞ
sD

� �
þ x2ðt þ TEÞ

sD
� 3: ð22Þ

The resulting model is compared to simulated time-courses for
a range of vessel radii in Fig 4.

Before the model of Bauer et al. could be compared to the BOLD
simulations it had to be extended to the case of randomly oriented
cylinders. To achieve this, the H-function in Eq. (16) was averaged
over vessel orientation angle as follows

s
_

0ðsÞ ¼
Z p

0
dh

sin h
2

Z
V

d3r
1

s� ixðrÞ ;

¼ 1
ð1� fÞs HRC

s
fdx

� �
� fHRC

s
dx

 �	 

; ð23Þ
HRCðyÞ ¼
Z p

0
dh

sin h
2
� 1þ sin4 h

y2

 !1=2

¼ 3F2 �1
2
;

1
2
; 1

� �
;

3
4
;

5
4

� �
; � 1

y2

� �
: ð24Þ

This model is compared to our simulation results in Fig. 5. How-
ever, although it is possible to calculate the signal at the moment of
the spin-echo with this model, it is not currently possible to calcu-
late it at arbitrary times for t > TE/2 and so only the FID range is
shown.

To compare these models in the context of vessel size imaging,
we plot the impact of the vessel network on the relaxation time
DR2 = �log (s(t))/t as function of the vessel radius for t = 30 ms
(FID) and DR2 = �log (s(TE))/TE for TE = 60 ms (SE).

From Fig. 6 we see that the most accurate model for R < 5 lm is
that of Sukstanskii and Yablonskiy for both the FID and SE cases.
For R > 7 lm the extended Bauer et al. model is the most accurate
for the FID case and for R > 20 lm the Kiselev and Posse model is
most accurate for the SE case but no model is at all accurate in



Fig. 5. Comparison of the Bauer model with simulation results. Markers are
simulated data, solid lines are theoretical curves. R values are displayed in
micrometer values on the chart. The input parameters for all simulations were
OEF = 0.4, dCBV = 0.03. Relatively good agreement is seen for very large and very
small (1 lm) vessels but not in the intermediate range.

Fig. 6. The effect of vessel radius on transverse relaxation for all BOLD models. Solid
and dashed lines represent model results in the FID and SE sequences respectively.
Red lines – Yablonskiy and Haacke model; blue lines – Kiselev and Posse model;
green lines – Sukstanskii and Yablonskiy model; orange lines – extended model by
Bauer et al. Input parameters for all simulations are: OEF = 0.4, dCBV = 0.03. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. Values of (a) OEF, (b) dCBV and (c) dR2 found when fitting the model S(t) = S0

exp(�dR2t) s(t) to simulated datasets over a range of blood vessel radius and using a
variety of BOLD models, s(t). The input parameters for all simulations are: OEF = 0.4,
dCBV = 0.03, dR2 = 0 (shown by dotted gray lines). Unlike in other figures, the lines
are only shown to display trends. Solid lines represent model results in the FID
sequence and dashed lines represent model results in the SE sequence. Red lines –
Yablonskiy and Haacke model; blue lines – Kiselev and Posse model; green lines –
Sukstanskii and Yablonskiy model (in which we assume that dCBV is known from
independent measurement). Using the Kiselev and Posse SE model the optimisation
failed to converge for R 6 8 lm. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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the intermediate range. As the majority of the f(R) distribution falls
into this category it may be assumed that no model tested would
be accurate for a physiological distribution of radii.

It is also possible to compare the BOLD models on their ability
to estimate the parameters OEF and dCBV in quantitative BOLD
by fitting them to our simulation results. Since in any real experi-
ment one is unable to exclude the effect of T2 decay, we have also
allowed for a shift in the measured decay rate, DR2. The full model
fitted was therefore S(t) = S0 exp(�dR2t)s(t), where s(t) is the BOLD
signal predicted by each of the models in Eqs. (6), (9), (12), and
(19).

In the Sukstanskii and Yablonskiy model, OEF and dCBV only ap-
pear in the coefficient G0 and it was therefore not possible to fit
these parameters separately. Instead we fitted the OEF on the
assumption that the dCBV is known. It was also not possible to
fit the Bauer model to our simulation results due to the computa-
tion time required to calculate an integral over a hypergeometric
function. The process can be accelerated by creating a lookup table
of timecourses over a range of OEF, dCBV and R values, which could
then be interpolated in data fitting. However, even this process was
prohibitively time-consuming for the purposes of this study. The
ability of the remaining models to correctly determine the blood
oxygenation and volume of our simulated curves are compared
in Fig 7.
3.1. Phenomenological model

Analyzing simulated data we found that they can be well de-
scribed by the following phenomenological equation:

sðtÞ ¼ exp½�ff ðtÞ�; f ðtÞ ¼ A1ðexp½�A2t� � 1Þ þ A3t þ A4; ð25Þ

where parameters An were all found to follow the equation

An ¼ OEFðB1 � B2 expð�B3OEFÞÞ; ð26Þ

Except that in the FID range it was not necessary to fit A4 as s(0) = 1.
Results of fitting Eq. (25) to data simulated with a physiological dis-
tribution of vessel radii are shown in Fig. 8a and results of fitting Eq.
(26) fitted to the resulting parameters, An are shown in Fig. 9a. Val-



Fig. 8. (a) Phenomenological model fit to simulation results for (a) varied OEF,
TE = 60 ms and (b) varied TE (values shown next to the curves), OEF = 0.40.
dCBV = 0.05.

Fig. 9. Parameters in Eq. (25) found from fitting to simulation results for varied OEF
(a) and spin-echo time (where A3 always equals 0.48) (b). Lines are the fit to Eqs.
(26) and (27) in (a) and (b) respectively.

Table 1
Values of parameters when fitting Eqs. (25) and (26) to simulated FID timecourses
using a physiological distribution of radii, OEF = 0–100%.

A1 A2 A3

B1 55.385 35.314 0.3172
B2 52.719 34.989 0.3060
B3 �0.0242 �0.0034 3.1187

Table 2
Values of parameters when fitting Eqs. (25) and (26) to simulated GESSE timecourses
using a physiological distribution of radii, OEF = 0–100%, t > TE/2 and TE = 60 ms.

A1 A2 A3 A4

B1 70.428 0.0324 0.2587 58.110
B2 57.789 �0.1708 0.1752 62.892
B3 1.4565 2.1357 6.1483 1.5827
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ues of the fitted parameters are shown in Tables 1 and 2 for the FID
and SE sequences respectively.

It is also possible to fit Eq. (25) to simulated data with varied
spin echo time, replacing Eq. (26) with:

An ¼ TEðB1 � B2 expð�B3TEÞÞ þ B4: ð27Þ
However, when varying TE it is not necessary to fit A3, as this
parameter merely represents the long-time asymptotic decay rate.
The results of this process are shown in Figs. 8b and 9b.

The phenomenological model was equally accurate under vari-
ation of the deoxygenated blood volume (results not shown). In
fact the factorization of f was found to be accurate even when
splitting the radius distribution into components. The signal was
simulated for the complete distribution and then the distributions
for veins and capillaries separately. The product of the signals from
the two separate fractions was found to exactly match the signal
from the combined distribution, which suggests that the following
equation is exact for all diffusion rates [19]:

sðtÞ ¼ exp �
Z 1

0
f ðt; RÞfðRÞdR

� �
ð28Þ

where f(t;R) is a radius-specific form function.
4. Discussion

The first result of this study was to show the ranges of validity
of various resting-state BOLD models from the literature. The first
diffusive model tested was the Kiselev and Posse model, which
makes the assumption that local field inhomogeneities can be con-
sidered to be linear. In their paper they give the validity criterion
R�

ffiffiffiffiffiffi
Dt
p

which translates to R� 7.7 lm for D = 1 lm2 ms�1 and
TE = 60 ms. Comparing their predicted decay rates with those from
the simulation study in Ref. [19] suggests that this could be relaxed
to simply R >

ffiffiffiffiffiffi
Dt
p

; however from the curves in Fig. 3 it would seem
that R > 3

ffiffiffiffiffiffi
Dt
p

would be more accurate. This disagreement is pre-
sumably due to the fact that this study has only considered the
extravascular signal while Kiselev and Posse also considered intra-
vascular signal, for which diffusion is unimportant due to the uni-
form cylinder approximation.

The model of Sukstanskii and Yablonskiy was derived on the
assumption that the distribution of phases in the system can be
represented by a Gaussian function. This is known to be valid for
fast diffusion and short times and the results in Fig. 4 agree with
this observation. The authors derive the following criterion for
validity:

R <
fD
dx

� �1=2

; ð29Þ

which, for the parameters in this study equates to R < 5 lm (as it
did in theirs). The results of our simulations support this limit on
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the vessel radius but also suggest that this could be extended for
short times. For example, in CGS units:

tR < 0:03
fD
dx

� �1=2

: ð30Þ

The model by Bauer et al. makes the strong collision approxima-
tion which is valid when diffusion can be considered to be a sta-
tionary Markov process, i.e. when the time scale of diffusion is
much less than that of dephasing. In addition, as the diffusion coef-
ficient approaches zero, the Bauer model converges with the static
model which is known to be precise (sc ?1 in Eq. [17]). In Ref.
[25] the authors state that their model can therefore be seen as
interpolating between the two limiting diffusion regimes. Since
the analytical expression for this model exists only for the FID sig-
nal. We were not able to test it for the MR signal around the spin
echo. For the FID signal, Fig. 5 shows that, although the model does
work well in the limiting cases, it does not accurately map the
intermediate range. There are no existing validity criteria for the
Bauer et al. model that are appropriate to our simulation parame-
ters but observation of Fig. 5 suggests that for the FID signal and
typical OEF and dCBV values, the Bauer et al. model is accurate with
vessel radii R < 3 lm and R > 7 lm.

From inspection of Fig. 6 we can see that for typical values of
OEF, f and TE, no model is accurate in the range 4 lm 6 R 6 8 lm
in the FID case and 4 lm 6 R 6 20 lm in the SE case. By comparing
time-courses simulated for distributions of radii and single values
we find that capillaries and veins behave approximately as though
they had a single radius of R = 3 lm and R = 7 lm respectively (see
Fig. 10). This means that the Sukstanskii and Yablonskiy model is
able to provide an accurate representation for the case of capillar-
ies but no model can achieve this for veins (or therefore the full
distribution).

The models explored in this study are currently used for a range
of applications. One such application is known as quantitative
BOLD (qBOLD), in which a BOLD model is fitted to the spin echo
time-course measured by the Gradient Echo Sampling of a Spin
Echo (GESSE) sequence [28], thus providing measurements of the
local OEF and dCBV, [4,5]. These parameters are of clinical signifi-
cance as they provide insight into tissue ischemia and could poten-
tially be utilised for calibrated fMRI [29–31]. By fitting the various
models in the literature to our simulation results we were able to
show the impact of each model’s diffusion approximations on its
ability to quantify blood oxygenation and volume.
Fig. 10. The signal from the complete distribution of vessel radii is shown to exactly
correspond to the product of signals from separate capillary and vein fractions. The
agreement between signal from the capillary and vein fractions is also compared to
their mean radius values R = 3 lm and R = 7 lm respectively. Capillaries behave
more similar to a network with a single radius than veins due to their symmetrical R
distribution.
From Fig. 7 one can see the range of vessel radii for which each
of the models described are effective at estimating the various tis-
sue parameters. For physiologically common values of vessel radii,
the most accurate estimations of OEF and dCBV are made by the
Yablonskiy and Haacke model for the FID sequence. This suggests
that improvements to the qBOLD method may be possible be
switching to the FID sequence, rather than the SE sequence which
is currently favoured [4,25,32]. It is slightly surprising that the
model of Kiselev and Posse can only estimate OEF accurately for
vessels larger than 20 lm in radius for the SE sequence. The expla-
nation lies in the fact that the approximation of the signal decay as
G2t3 is only valid in an extremely narrow range of times [22]. It
turned out that the restrictions of diffusion by the blood vessel sur-
faces modified the t3 time dependence of MR signal by generating
an additional negative term proportional to t7/2, as appears in Eqs.
(18) and (24) in [22]. Due to the presence of such a t7/2 term, the
time interval where the cubic term adequately describes the signal
behaviour is very small.

As OEF and f appear only as a product in the Sukstanskii and
Yablonskiy model, these parameters are indistinguishable and this
model alone cannot be used to separate them. The fact that sepa-
rate information on OEF and dCBV is not available when the phase
distribution is close to Gaussian suggests that long echo times are
more effective for quantitative BOLD.

Another application of diffusive BOLD models is vessel size
imaging (VSI) [11] which exploits the different sensitivity of GE
and SE sequences to vessel radii shown in Fig 6. Currently this is
achieved by measuring the apparent diffusion coefficient (ADC)
and the ratio of contrast-related relaxation rate changes for GE
and SE sequences. These data are then typically analysed by apply-
ing the Kiselev and Posse model for SE and the Yablonskiy and
Haacke model for FID. Recent research has shown that the result-
ing vessel radius estimates disagree with microscopy measures
by a factor of 6–8 [33]. The results in Fig. 6 suggest that this could
be due to the invalid assumption of slow diffusion for R < 20 lm.

In order to produce a model that is accurate for the physiolog-
ical range of vessel radii we turned to a phenomenological ap-
proach. It is possible to fit Eq. (25) to our simulation results with
an extremely high level of accuracy (see Fig. 8). In fact the typical
fitting residual is �10�5, which is low enough to suggest that the
form of the model has some significance.

The parameters that result from fitting the phenomenological
model to the simulation results describe smooth curves that are
exponential for low values of OEF or TE and linear for high values
(see Fig. 9). Fitting the expression in Eq. (26) to these curves
yielded the values in Tables 1 and 2 which can be used to generate
a phenomenological BOLD model that could be used to fit data for
quantitative BOLD or to assess the accuracy of future diffusive
BOLD models.

Inspection of the variation of terms in Eq. (25) with OEF (which
scales with dx) and TE shows that a parameter with units of time
(presumably the diffusion time) is needed to make A2 and A3

dimensionless. Further exploration of this model over varied vessel
radii and diffusion rates may allow this parameter to be elucidated.

In Fig. 10 we show that the signal from separate fractions of the
radius distribution can be combined to reproduce the signal for the
full distribution (in agreement with [19]). This suggests several
further improvements to the quantitative BOLD method. By calcu-
lating the signal from the capillaries and veins separately, the ves-
sel types could be given different values of OEF, f, T2, permeability
and blood hematocrit. In addition, the signal attenuation caused by
veins and capillaries could be separately calculated by whichever
model is the most accurate and then the results combined.

Several semi-phenomenological models have previously been
proposed for description of the MR signal in the presence of mag-
netic field inhomogeneities [26,39]. The model by Stables et al. [40]
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makes the same Gaussian approximation as that of Sukstanskii and
Yablonskiy but also makes the additional assumption that the cor-
relation function is a simple exponential, G(t) = exp(�t/tc), where tc

is a correlation time. Under these assumptions the signal time-
course around the spin-echo is:

sðtÞ¼exp �Dx2t2
c 2exp � TE

2tc

	 

þ2exp �2t�TE

2tc

	 

�exp � t

tc

	 

þ t

tc
�3

� �	 

;

ð31Þ

where Dx2 ¼ 3=5dx2f: While it provides a simple and attractive
way to describe MR signal, it also introduces a phenomenological
parameter tc with undetermined relationship to system properties.
Also, as it was demonstrated by Jensen and Chandra [41], the corre-
lation function does not satisfy exponential behaviour. If the
assumption of a simple exponential correlation function were valid,
the parameter tc could be found by fitting this equation to simulated
time-courses (in the range of validity of the Gaussian approxima-
tion). Although this was not found to be the case, our phenomeno-
logical model in Eq. (25) has a similar ‘‘structure’’ as the model in
Eq. (31).

Correctly accounting for diffusion in models of the BOLD mech-
anism represents a major step towards understanding the basis of
the phenomenon. To further improve on the model there are a
number of additional considerations, the most obvious being the
validity of infinite cylinder approximation. Although it is difficult
to see how the branching structure of a vessel network could be
incorporated into a mathematical model, it would be relatively
straight-forward to grow simulated networks using either the fi-
nite element [34] or finite perturber [35] method. The results could
then be fitted with a phenomenological model as was performed in
this study, or related back to one of the analytical models. A similar
approach could be used to account for the compartmentalisation of
deoxyhaemoglobin by red blood cells within the blood vessels. This
study has focussed on the extravascular signal, where the assump-
tion that cylinders have uniform susceptibility has been shown to
be accurate [36]. The intravascular contribution may however be
strongly dependent on intravascular compartmentalisation of
deoxyhaemoglobin (and hence intravascular diffusion). Phenome-
nological equations for blood signal were proposed previously
[37] based on experimental measurements.

The existence of cylinder orientation anisotropy could be easily
accounted for in either analytical models or simulations. In the sta-
tic dephasing regime, for example, vessel orientation anisotropy
can be accounted for by inserting an orientation distribution func-
tion when orientation averaging is performed. In Ref. [27]) the
standard deviation of vessel orientations is found to be �0.87 rad
across the healthy human brain. Assuming a normal distribution,
the form of the resulting signal is similar to that under the random
cylinder model, however the apparent OEF is shifted from its true
value by up to 8% depending on mean vessel orientation.

Finally there is the assumption of isotropic diffusion. We know
from diffusion MRI studies that there is significant diffusion anisot-
ropy in white matter [38] (although rates are still well described by
a Gaussian distribution). As expected, diffusion anisotropy in an
isotropically oriented vessel network has very little effect on the
signal (results not shown). However, there may well be a signifi-
cant effect on the signal when diffusion anisotropy is combined
with vessel orientation anisotropy.
5. Conclusion

Existing models of the BOLD contrast mechanism are able to
accurately calculate signal only for networks of either capillaries
or large veins. The diffusion approximations of the BOLD models
were shown to have varying impacts on the ability to measure
tissue parameters, depending on choice of model and sequence.
In this paper we have introduced a new, phenomenological model
that is extremely accurate for the case of blood vessels modelled as
long uniform cylinders with the physiological distribution of radii.
This model could be used in BOLD data analysis or to test the effec-
tiveness of future analytical models.
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